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We propose a finite-difference-based lattice Boltzmann model for dense binary mixtures based on the
Enskog theory. The model is applicable to a mixture composed of two dense fluids with different shear
viscosities. The macroscopic hydrodynamic and diffusion equations are derived from the model through the
Chapmann-Enskog procedure. The model is also validated numerically.
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I. INTRODUCTION

Modeling and simulating mixtures of dense fluids is a
challenging task in both science and engineering because
such a system usually involves large range scales in both
time and space, which may cause a significant obstacle for
many conventional numerical methods based on the Navier-
Stokes equations. On the other hand, it is well understood
that macroscopic phenomena occurring on large time and
space scales are nothing but results of microscopic interac-
tions between molecules. Therefore, once the microscopic
interactions are modeled appropriately, the hydrodynamic
behavior of the system appears naturally. The lattice Boltz-
mann equationsLBEd method which appeared in recent
years is a promising tool for simulating fluid systems involv-
ing complex interactionsf1g.

In the literature, there exist several LBE models for mul-
ticomponent systems, which were obtained from different
viewpoints. Historically, Gunstensenet al. were the first to
apply the LBE to such systemsf2g based on the heuristic
color lattice gas automata model developed by Rothman and
Keller f3g. The idea of using some pseudopotentials to model
the interparticle interactions was introduced into the LBE
method by Shan and Doolen for multicomponent systems
f4g. An alternative approach, in which the free energy was
incorporated into the collision operator through the pressure
tensor, was proposed by Swiftet al. f5g. The above models
were more or less heuristically constructed, and might in-
volve some inconsistency with thermodynamicsf6g. Re-
cently, it has been demonstrated that LBE models with sound
physics can be derived directly from certain kinetic equa-
tions using standard discretization procedures. For example,
a LBE model for ideal binary mixtures was developed based
on Boltzmann theoryf6g; and subsequently a model for non-
ideal binary mixtures was proposed based on Enskog theory
f7g.

However, the LBE model proposed in Ref.f7g can only be
used to mixtures composed of two fluids with identical shear
viscosities, because each component uses the same discrete
velocity set. In this paper, we aim to construct rigorously a
more general LBE model for binary mixtures based on En-
skog theory. The basic idea is to discretize the discrete-

velocity Enskog equations, which are derived from Enskog
theory and use different discrete-velocity sets for different
components, using a finite-difference scheme. In this finite-
difference-based lattice Boltzmann equationsFDLBEd
model, the postcollision distribution functions of each com-
ponent are shifted according to a Lax-Wendroff scheme,
which enables the distribution functions of different species
to evolve on the same uniform lattice. The paper is organized
as follows. In Sec. II, we present the general Enskog theory
for binary mixtures of dense fluids; in Sec. III, a discrete-
velocity Enskog model is proposed for an isothermal binary
mixture; a FDLBE is obtained from the discrete-velocity
equations in Sec. IV, together with an analysis of the model;
in Sec. V, we present some numerical verifications for the
model, and finally some discussion is made in Sec. VI.

II. ENSKOG THEORY FOR DENSE BINARY
MIXTURES

Enskog theory for single-component dense-hard-sphere
gases was an extension of the Boltzmann theory, in which
both the difference in position of two colliding particles and
the increase in collision probability are considered. This
theory was later extended to binary mixtures of hard spheres
by Thornef8g. These theories are usually termed the standard
Enskog theorysSETd. Van Beijeren and Ernstf9g later pro-
posed a revised Enskog theorysRETd for both single-
component and multicomponent fluids, which took account
of the spatial nonuniformities in the radial distribution func-
tions. It has been shown that the RET for a single-component
fluid is equivalent to the SET, but for binary mixtures, there
are some distinct differences between the two theories. Very
recently, an Enskog theory for mixtures of dense fluids was
proposed in the SET framework from a different viewpoint
f10g.

Nevertheless, regardless of the difference between these
Enskog theories, the kinetic equation for each species in a
binary mixture composed of components 0 and 1 shares the
same form,

sDa + ga · =va
dfasx,va,td = Jaa + Jaa8, s1d

wherea8=1−a, Da=]t+va·=, and fasx ,va,td is the single-
particle distribution function representing the average num-
ber of hard spheres of componenta swith diametersa and*Corresponding author. Electronic address: metzhao@ust.hk

PHYSICAL REVIEW E 71, 026701s2005d

1539-3755/2005/71s2d/026701s12d/$23.00 ©2005 The American Physical Society026701-1



massmad at positionx with velocity va at time t. ga is the
acceleration due to an external force acting on the particle of
componenta. Jab is the collision operator between two
spheres of componentsa andb and is given bysb=a,a8d

Jab =E dmabfxabsx,x+uhnkjdfbsx+,vb8dfasx,va8d

− xabsx,x−uhnkjdfbsx−,vbdfasx,vadg, s2d

wherexab is the radial distribution functionsRDFd between
componentsa andb, x±=x±sabk with sab=ssa+sbd /2, and
dmab=sab

2 Qsvba·kdsvba·kddk dvb is the collision space be-
tween two spheres of componentsa andb. vba=vb−va is the
relative velocity of the two colliding spheres.Q is the Heavi-
side unit step function, andk is the unit vector directed from
the sphere of componentb to the sphere of componenta
along the line of centers of the two colliding particles.va8 and
vb8 are the velocities of spheresa and b after collision,va8
=va+2Mbasvba·kdk, vb8=vb−2Mabsvba·kdk, where Mab

=ma/ sma+mbd.
The difference between the SET and RET lies in the as-

sumed dependence on the number densitieshnkj in evaluation
of xab, the radial distribution function of two colliding hard
spheressone of componenta and the other of componentbd.
In SET, xab is defined as afunction of hnkj in a uniform
equilibrium state, wherehnkj are evaluated at some pointssay
rabd located between the centers of the colliding particles,
i.e.,xab=xab(sabu hnksrab,tdj). Usually, this point is chosen to
be the midpoint of the line joining the centers of the spheres,
but other choices, such as the contact point and the center of
mass of the two spheres, are also possiblef11g. In the RET,
on the other hand, the functionxab is defined as afunctional
of hnkj in a nonuniform equilibrium state, which depends not
only on hnkj, but also on their derivatives.

In Enskog theory, the number density of componenta is
defined as

na =E fadva. s3d

The number density, mass density, velocity, and temperature
of the mixture are defined by

n = o
a

na, s4ad

r = o
a

mana, s4bd

ru = o
a

maE vafadva, s4cd

and

D

2
kBT = o

a
E 1

2
masva − ud2fadva. s4dd

The macroscopic conservation equations of mass, mo-
mentum, and energy for the mixture as well as the transport
coefficients can be derived from Eq.s1d through the

Chapman-Enskog expansion methodf12g. The resultant
equations for both the SET and RET take the same form, and
the expressions of the shear viscosity, the bulk viscosity, and
the thermal conductivity for the SET and RET are also iden-
tical. However, the expressions of the mutual diffusion coef-
ficient and the thermal diffusion coefficient show some dif-
ferences due to the different choices of the RDF.

III. A SIMPLIFIED ENSKOG MODEL FOR ISOTHERMAL
BINARY MIXTURES

The Enskog equations1d can be simplified for isothermal
mixtures. For simplicity, in what follows we consider the
case of the SET, i.e., the RDF is chosen to be
xabsx ,x+ u hnkjd;xabsx+yabsabkd with yab=1/2. Tothis end,
we first expandfb andxab appearing in the collision integrals
Jab in a Taylor series up to first order in gradients aboutx,
that is,

fbsx ± sabk,vbd = fbsx,vbd ± sabk · = fb, s5ad

xabsx ± yabsabkd = xabsxd ± yabsabk · = xab. s5bd

Substituting these expressions intoJab yields

Jab = Jab
s0d + Jab,1

s1d + Jab,2
s1d , s6d

where

Jab
s0d = xabE ffa8fb8 − fafbgdmab, s7ad

Jab,1
s1d = = xab ·E yabsabkffa8fb8 + fafbgdmab, s7bd

and

Jab,2
s1d = xabE sabk · ffa8 = fb8 + fa = fbgdmab, s7cd

with fa8; fasx ,va8d.
Note thatJab

s0d sa,b=0,1d are similar to the collision terms
in the Boltzmann equation for a mixture, and therefore we
can approximate them with the Bhatnager-Grass-Krook
sBGKd model f13g,

Jab
s0d = −

xab

lab
ffa − fab

seqdg, s8d

wherelab sa,b=0,1d are some relaxation times and can be
expressed asf14g

1

lab
=

nb

gab
, s9d

with gab being some collision parameters that depend on the
massesma and mb but are independent of the velocity. The
functions fab

seqd sa,b=0,1d are the Maxwell distribution func-
tions given by
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fab
seqd = naS ma

2pkBTab
DD/2

expF− masva − uab
seqdd2

2kBTab
seqd G , s10d

with D being the spatial dimension andkB the Boltzmann
constant.uab

seqd andTab
seqd are some parameters not necessarily

equal to the velocity and temperature of the mixture. Several
possible choices for these parameters are available, as sug-
gested by Luo and Girimajif6g. In the present study, we
choose uab

seqd=u and Tab
seqd=T for a,b=0,1. It should be

pointed out that this assumption will lead to a one-fluid
model for the mixturessee belowd. By discarding such an
assumption, we can derive a two-fluid model for dense mix-
tures. With the above choice, we havefaa

seqd= f
aa8
seqd; fa

seqd, and
thus

o
b

Jab
s0d = −

1

la
ffa − fa

seqdg, s11d

wherela is an effective relaxation time given by

1

la
=

xaa

laa
+

xaa8

laa8
. s12d

We now discuss the terms involving the first-order spatial
gradientsJab,1

s1d and Jab,2
s1d . If we approximatefa with fa

seqd in
Eqs.s7bd and s7cd, we have

Jab,1
s1d = − babrbfa

seqdsva − ud · = xab, s13d

Jab,2
s1d = − 2babrbxabfa

seqdsva − ud · = ln rb + Rab, s14d

where

Rab = 2babrbxabfa
seqdFSMba − Mab

2

D + 2

sva − ud2

ub
D = ·u

− Mab
2

D + 2

sva − udsva − ud
ub

: = uG , s15d

with ub=kBT/mb. Here “:” denotes the product of two ten-
sors, bab=Vab/mb is the second virial coefficient withVab
=2D−1VDsab

D , whereVD=sp /4dD/2/Gs1+D /2d is the volume
of a D-dimensional sphere of unit diameter, andG is the
usual Gamma function. In deriving the above equations, we
have used the fact thatfa

seqdsva8dfb
seqdsvb8d= fa

seqdsvadfb
seqdsvbd and

the isothermal assumption. Through some standard algebra,
we can show that

E Rabdva = 0, E vaRabdva = 0, s16d

which means thatRab does not affect the conservation of
mass and momentum for each component. Therefore we can
drop it from the expression ofJab,2

s1d given by Eq.s14d, and
thus

Jab
s1d ; Jab,1

s1d + Jab,2
s1d = babrbxabfa

seqdsva − ud · = lnsrb
2xabd.

s17d

With the above results, we obtain the following simplified
Enskog equations for an isothermal binary mixture of hard
spheres:

Dafasx,va,td = −
1

la
ffa − fa

seqdg + Ja8 + Ga, s18d

where

Ga = fa
seqdsva − ud ·ga/ua, s19d

Ja8 = Jaa
s1d + Jaa8

s1d = − fa
seqdsva − ud ·K a, s20d

with K a=obbabrbxab= lnsrb
2xabd, and fa

seqd is the Maxwellian
distribution function,

fa
seqd =

na

s2puadD/2 expF−
sva − ud2

2ua
G . s21d

It is noted that in the derivation ofGa, we have approxi-
matedfa with fa

seqd, as done inf15g. Other expressions for this
term are also availablese.g.,f16,17g and references thereind.

Some remarks should be made on the effective relaxation
time la. It is noted that in the simplified Enskog equation
s18d, Ja8 is the result of the assumption of a dense fluid, and
vanishes in the dilute limit. Therefore, as in the BGK models
for ideal fluidsf14g, the local momentum conservation in the
dilute limit requires thatl0=l1;l. It is also noted from
Eqs.s9d ands12d that l is not a constant, but a variable that
depends on the number densities of the components and the
RDFsxab.

IV. A DISCRETE-VELOCITY ENSKOG MODEL

We now discretize the velocity space of the simplified
Enskog equation Eq.s18d. We follow the procedure proposed
by He and Luof18g for a single-component ideal gas. First,
we expand the equilibrium distribution functionsEDFd
fa

seqd given by Eq.s21d into the Taylor series up to second
order inu:

fa
seqd =

na

s2puadD/2 expS−
va

2

2ua
D

3 F1 +
va ·u

ua
+

sva ·ud2

2ua
2 −

u2

2ua
G . s22d

The velocity space is then discretized into a finite set of
discrete velocitieseai=caêi such that the numerical quadra-
ture

E va
kfa

seqdsx,va,tddva = o
i

Waieai
k fa

seqdsx,eai,td s23d

holds exactly for 0økø3. A natural choice for the evalua-
tion of the integral is the Gaussian quadrature with the
weight function exps−va

2/2uad f18g. In what follows, we re-
strict ourselves to a two-dimensional nine-velocity model
f19g for the sake of simplicity without losing generality. In
this case, the discrete velocities yielding from the Gaussian
quadrature areeai=caêi, with ca=Î3ua, and
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êi =5
s0,0d, i = 0,

ScosFsi − 1d
p

2
G,sinFsi − 1d

p

2
GD , i = 1 – 4,

ScosFSi −
9

2
Dp

2
G,sinFSi −

9

2
Dp

2
GD . i = 5 – 8.6

s24d

The integration weights in Eq.s23d are given by Wai
=2pua expfeai

2 / s2uadgvi with

vi = 54/9, i = 0,

1/9, i = 1 – 4,

1/36, i = 5 – 8.
6 s25d

Once the discrete velocitieseai and the weightsWai are
determined, we are now able to define a discrete-velocity
Enskog equationsDVEEd for binary mixtures of nonideal
fluids based on Eq.s18d,

Daifaisx,td = −
1

l
ffai − fai

seqdg + Fai, s26d

whereDai=]t+eai ·=, faisx ,td=Waifasx ,eai ,td, and

fai
seqd = vinaF1 +

eai ·u

ua
+

seai ·ud2

2ua
2 −

u2

2ua
G . s27d

The last term on the right hand side of Eq.s26d, Fai, comes
from Ja8 andGa, and can be expressed as

Fai = fai
seqdseai − ud ·Fa, s28d

where

Fa = − K a + ga/ua. s29d

Note thatFa seemingly looks like an effective external force,
but it is noted that the first part −K a is due to the interparticle
collisions, and irrelevant to the external force field.

For this discrete-velocity Enskog equation, the number
density of each component and the velocity of the mixture
are consequently defined as

na = o
i

fai, ru = o
a

mao
i

eaifai, s30d

with n=n0+n1 andr=m0n0+m1n1.

V. A FINITE-DIFFERENCE-BASED LATTICE
BOLTZMANN MODEL

A. Formulation

For practical applications, the space and time of the
DVEE s26d should also be discretized. However, one cannot
expect to construct a lattice-Boltzmann-type method directly
from the DVEE on a regular lattice with a single time step,
as usually done for single-component fluids, except for the
case of m0=m1. This is becausee0i Þe1i for i Þ0 if m0
Þm1, which indicates that the configuration spaces for the
two components cannot be discretized on a single uniform
lattice.

In Ref. f7g, a standard LBE was proposed by modifying
the EDFs such that the two components can use the same
discrete-velocity set. However, this modification makes the
model only applicable to binary mixtures composed of fluids
with the same shear viscosities. Apparently, this constraint
limits the application of the model.

On the other hand, since the DVEEss26d are nothing but
a set of partial differential equations, one can readily dis-
cretize them using some standard numerical techniques for
time evolution equations. In fact, starting from the discrete-
velocity Boltzmann equation, some lattice Boltzmann meth-
ods based on finite-difference, finite-volume, and finite-
element techniques have been proposed recently for the
usual single-component systemse.g., f20–23gd. In this sec-
tion, starting from the present DVEEs26d, we propose a
finite-difference-based lattice Boltzmann method for non-
ideal binary mixtures.

We first rewrite the DVEE as two consecutive equations
in a time-splitting form:

]t fai = −
1

l
ffai − fai

seqdg + F̂ai s31ad

and

]t fai + eai · = fai = 0, s31bd

whereF̂ai is an effective forcing term to be determined.
Equations31ad describes the collision process, and can be

solved locally since it is irrelevant to spatial derivatives.
Here we discrete it using an explicit first-order Euler scheme,

f̂ aisx,td = faisx,td −
1

t
ffai − fai

seqdg + dtF̂ai, s32d

wheret=l /dt is the dimensionless relaxation time, anddt is
the time increment. Equations31bd is used to shift the post-

collision distribution functionsf̂ ai, and here we solve it on a
regular lattice with spacingdx using the second-order Lax-
Wendroff scheme,

faisx,t + dtd = f̂ aisx,td −
Aa

2
f f̂ aisx + eidt,td − f̂ aisx − eidt,tdg

+
Aa

2

2
f f̂ aisx + eidt,td − f̂ aisx,td + f̂ aisx − eidtdg,

s33d

whereei =cêi si =0–8d are some reduced discrete velocities
dependent only onc=dx/dt, and the parameterAa is chosen
to be Aa=ca/c, such thateai=Aaei. Other more general dis-
crete schemes for Eq.s32d can be found inf20g. As indicated
in f17g, in order to obtain the correct hydrodynamics, the
discrete lattice effects should be considered, and the fluid

velocity u and the “forcing” termF̂ai should be redefined as

ru = o
a

mao
i

faieai +
dt

2 o
a

raFa, s34d

F̂ai = S1 −
1

2t
DFai. s35d
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We now examine the stability property of the present
finite-difference-based lattice Boltzmann scheme. It is clear
that the collision processs32d is the same as that in the stan-
dard LBM, and the stability requirement on the time step is
dtø2.0l, or tù0.5. Meanwhile, a simple von Neumann sta-
bility analysis on the Lax-Wendroff streaming schemes33d
results in another requirement on the time step:Aa=ca/c
ø1.0, or dtødx/Î3ua, which is just the Courant-Friedrich-
Levy condition. Therefore, the overall stability requirement
on the time step is

dt ø minh2.0l,dx/Î3u0,dx/Î3u1j. s36d

B. Hydrodynamic equations

Substituting f̂ ai given by Eq.s32d into Eq. s33d, and ex-
panding the variables aroundsx ,td up to Osdt

2d, one can ob-
tain the following continuous equationsAppendix Ad:

Daifai +
dt

2
Dai

2 fai = −
1

l
ffai − fai

seqdg + F̂ai, s37d

which differs from the original DVEEs26d in having an ad-
ditional term proportional todt. This means that the numeri-
cal scheme given by Eqs.s32d and s33d is only a first-order
scheme in both time and space for the DVEEs26d. However,
this does not mean that the scheme is also of first-order ac-
curacy for the macroscopic hydrodynamic equations. Actu-
ally, this numerical error can be absorbed into the physical
transport coefficients by adjusting the relaxation timet, and
thus maintains the second-order accuracy in both time and
space for the macroscopic equations. In fact, through the
Chapman-Enskog procedure, we can derive the following
hydrodynamic equations from Eq.s37d ssee Appendix A for
detailsd:

sad the continuity equation for each species

]tra + = · sraud = − = ·Ja, s38d

sbd the continuity equation for the mixture

]tr + = · srud = 0, s39d

scd the momentum equation for the mixture

]tsrud + = · sruud = − = p + = · frns=u + s=udTdg

+ o
a

raga, s40d

where Ja=t−1st−1/2dĴa, Ĵa= j a+rauaFadt /2, j a

=maoiseai−udfai is the mass diffusive flux of component
a, n is the shear viscosity given by

n =
nkBT

r
St −

1

2
Ddt, s41d

andp=p0+p1 is the total pressure given by

pa = uaras1 + baaraxaa + baa8ra8xaa8d, s42d

with a8=1−a.
Obviously, the pressure of the mixture satisfies an equa-

tion of state for a nonideal fluid. Therefore, a phase transition

of the mixture can be simulated using the present model by
adjustingbab and xab. In the single-component region, the
pressure reduces to the previous result for nonideal fluids
f16g. In the limit of bab=0, the equation of state reduces to
that for binary mixtures of ideal gases.

It is noted from Eq.s41d that, although the DVEEs for
both components use the same relaxation timel, the shear
viscosities of the two components can be different. In fact, in
the bulk of componenta, the shear viscosity isna=sl
−0.5dtdkBT/ma, which depends on the molecular massma of
componenta besidesl and, therefore, may be different from
na8 for another component with molecular massma8. This
feature is the main difference between the present FDLBE
and the standard LBEf7g.

The pressure in the hydrodynamic equations40d is isotro-
pic in theory. In numerical implementations, however, the
gradients involved inJa8 in Eq. s31ad are computed explicitly
by certain finite-difference schemes. The discretization will
produce a pressure tensor that includes some anisotropic
components. For instance, if we approximate the gradient of
a variablew as

=w < =hw ;
1

cs
2dx

o
i

viêiwsx + êidxd, s43d

then using the Taylor expansion ofwsx+ êidxd we can obtain
that

=hw = = w + dx
26 = ¹2w. s44d

With such an approximation, the discrete version ofK a, K a
h,

can be written as

K a
h = K a +

dx
2

3 o
b

babxab = ¹2rb, s45d

where we have assumed thatxab varies slowly in space. After
some standard algebraic manipulations, we obtain

o
a

rauasK a
h − K ad = = ·P8, s46d

where

P8 = krFS1

2
u = ru2 + r¹2rDI − = r = rG

+ kfFS1

2
u = fu2 + f¹2fDI − = f = fG

+ krffsr¹2f + f¹2r + =r =fdI − s=r =f + =f =rdg,

s47d

where f=n0−n1 is the order parameter,kr=k00+k11
+k01/2, kf=k00+k11−k01/2, and krf=k00−k11, with kab
=uababxabdx

2/3. As such, the total pressure tensor can be ex-
pressed asP=pI +P8, with p defined as before. This indi-
cates that the discretization of the density gradient inKa
creats an anisotropic pressure tensor, which mimics the sur-
face tension effect. In fact, the additional termP8 is similar
to that in the free energy theoryse.g., seef24gd.

It should be pointed out that the terms related toP8 do not
appear in the final macroscopic equations40d within the
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framework of Chapman-Enskog analysis, since the density
gradients=r0 and=r1 can only appear in the second-order
solution of f0 and f1. This point was also noticed in the
analysis of the lattice Boltzmann equation for single-
component nonideal fluids with phase changef16g.

C. Diffusion equation

We now discuss the diffusion in the mixture. To this end,
we first rewrite the conservation equation of masss38d for
componenta as

rs]tXa + u · = Xad = − = ·Ja, s48d

where Xa=ra/r is the mass fraction of componenta. The
effective mass diffusive fluxJa can be evaluated by means of
the Chapman-Enskog technique. After some algebra, we ob-
tain ssee Appendix B for detailsd

Ja = − dtst − 0.5dnkBTda, s49d

whereda is the diffusion force and is defined by

da =
ra

nrkBT
Fra8Dga − = p +

r

ma
= maG , s50d

whereDga=ga8−ga, ma is the chemical potential of speciesa
and satisfies]ma/]nb=skBT/nadEab, with

Eab = dab + 2babraxab + nao
c

bacrc
]xac

]nb
. s51d

The diffusion forceda given by Eq.s50d is consistent with
the phenomenological one as suggested inf25g, given that
the RDFsxab are presented correctly. The three terms in the
square brackets correspond to the forced diffusion, pressure
diffusion, and ordinary diffusion, respectively. It is also
noted thatd0+d1=0 and thus they are not independent.

The phenomenological expression for the diffusive fluxJa
under the condition of no external forcessg0=g1=0d and
mechanical equilibriumsp=constd can be written as Fick’s
law:

Ja = − rDa = Xa, s52d

whereDa is the diffusivity. In order to find the expression of
Da, we substitute the expression Eq.s50d for da with the
conditionsg0=g1= =p=0 into Eq. s49d to obtain that

Ja = − dtst − 0.5dkBTsEaa = na + Eaa8 = na8d. s53d

Note that=pa and=pa8 in the above equation are not inde-
pendent because=p=0. Actually, from Eq. sB8d we know
that

=p = = p0 + = p1 = kBTsL0 = n0 + L1 = n1d, s54d

with La=Eaa+Ea8a for a=0,1, and hence =na8
=−La=na/La8 if =p=0. Therefore, Eq.s53d can be rewritten
as

Ja = − dtst − 0.5dkBTFEaa −
La

La8
Eaa8G = na. s55d

One the other hand, in the case of constant pressure, we have

=n = = na + = na8 = S1 −
La

La8
D = na; s56ad

therefore, with the aid of

=na = n = xa + xa = n, s56bd

=xa =
r2

mama8n
2 = Xa, s56cd

wherexa=na/n is the molar fraction, we can obtain

=na =
r2

mama8n

La8

La8xa8 + Laxa
= Xa. s57d

With Eq. s57d, Eq. s55d can be rewritten as

Ja = − dtst − 0.5dkBT
r2

mama8n

La8Eaa − LaEaa8

La8xa8 + Laxa
= Xa.

s58d

Comparing Eqs.s52d and s58d yields

Da = Ma
rkBT

mambn
St −

1

2
Ddt, s59d

where

Ma =
La8Eaa − LaEaa8

La8xa8 + Laxa
. s60d

Finally, Eq. s48d reduces to the nonlinear diffusion-
advection equation

rs]tXa + u · = Xad = = · srDa = Xad. s61d

Note thatDa depends on the number density, the diameter
ratio, and molar concentrations of both components, and can
take either positive or negative value by adjusting these pa-
rameters. Therefore, the proposed discrete velocity model
can be used to simulate both miscible and immiscible binary
mixtures.

It should be pointed out that the diffusion coefficients in a
binary mixture can be defined in a variety of ways, depend-
ing on how the diffusion flux is defined as well as which
choice of the driven forcef12g. If we choose to use the
gradient of chemical potential, instead of the mass fraction,
as the driven force in Fick’s law,

Ja = − rD̃as=madT,p, s62d

then from Eqs.s49d and s50d we would have

D̃a =
na

r
St −

1

2
Ddt, s63d

which is always positive.

D. The radial distribution functions

In practical applications, the contact values of the RDFs
xab must be specified in advance. There are several different
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methods for determining the RDFs for a mixture. One way is
to treat each RDF separately and specify the contact value
according to different theories of the mixturef26g; Another
way, usually called the van der Waals one-fluidsvdW-1d ap-
proximation f27g, is to treat the mixture as an effective
single-component fluid, and determine the RDFs from the
RDF of that effective fluid. Previous studiesf28g have shown
that the vdW-1 theory can produce quite reasonable results
for many binary mixtures. In this study, we choose the
vdW-1 theory to specify the RDFs of the binary mixture.

In the vdW-1 theory, each RDF takes the same form as the
EDF of a single-component fluid,

xab = xssed, s64d

wherex is the RDF of the virtual fluid, andse is the effec-
tive diameter of the virtual molecule of the assumed fluid.
The vdW-1 theory assumes that

se
D = x0

2s0
D + 2x0x1s01

D + x1
2s1

D. s65d

It is noted that in the vdW-1 approximation the cross di-
ameters01 in Eq. s65d is determined using certain mixing
rules, such as

s01 =
j01

2
ss0 + s1d, s66d

wherej01 is an interaction parameter. Different choices ofj01
will lead to different vdW-1 mixing rules. For instance, the
usual Lorentz and Berthelot rule usesj01=1.0. Other mixing
rules have also been proposed by some authorsse.g., f27gd.
By adjusting the parameterj01, we can control the force
between two spheres of different components due to the vol-
ume exclusion effect. Asj01.1.0, the volume effect is ef-
fectively enhanced and, thus, may induce a phase separation
of the mixture; on the other hand, by decreasing the value of
j01, we can obtain a miscible binary mixture.

The single-component RDF for the virtual fluid can take
any suitable models for a single-component hard-sphere
fluid, and there are many choices in the literature. One well-
known model for hard spheres is the so-called Carnahan-
Starling modelf29g, which reads

x =
1 − h/2

s1 − hd3 , s67d

whereh=nVDse
D is the packing factor of the virtual fluid.

With the RDF of the single fluid specified, the RDFs for
the mixture can be fully determined by Eq.s64d, and the
lattice Boltzmann models presented above can be used to
simulate binary mixtures of dense fluids.

VI. NUMERICAL VERIFICATIONS

In this section, we present some numerical results of the
FDLBE model described above. In simulations, the vdW-1
approximation s64d and the Carnahan-Starling RDFs67d

FIG. 1. Shear viscositysin lattice unitsd as a function of the
dimensionless relaxation timesx01=1.0d. Symbols are the FDLBE
results, and the solid lines are the theoretical predictions.

FIG. 2. Diffusivity sin lattice unitsd as a function of the dimen-
sionless relaxation timesx01=1.0d. Symbols are the FDLBE results,
and the solid lines are the theoretical predictions.

FIG. 3. Diffusivity sin lattice unitsd as a function of the interac-
tion parameterst=0.55d. Symbols are the FDLBE results, and the
solid lines are the theoretical predictions.
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were used, and the simulations were carried out on anNy
3Nx=256316 lattice unless mentioned otherwise.

We first test the shear viscosityn̂ of the proposed FDLBE
by measuring the decay rate of a sinusoidal perturbation in
velocity with small amplitude. In simulations, the lattice
spacingdx is set to be unity, and the time stepdt is set to be
0.1. The temperatureT is chosen such thatkBT/m=c2/3,
wherec=dx/dt andm=minhm0,m1j. It can be easily verified
that the stability requirement Eq.s36d is satisfied with the
above choice. Without loss of generality, the total number
density is taken to be 1.0. The molar fraction of component 0
is set to bex0=0.3, and the packing factors of the two com-
ponents areh0=0.03 andh1=0.07. The interaction param-
eterj01 in the mixing rule given by Eq.s66d is set to be 1.0.
The measured viscosity is presented in Fig. 1 as a function of
the relaxation timet for two different cases,n1/n0=1.0 and
n1/n0=2.0. In both cases, the molecular mass of component
0 is taken 1.0, andm1 is determined bym1=m0n0/n1 since

na~1/ma for the FDLBE. It is observed from Fig. 1 that the
numerical results for the shear viscosity are in excellent
agreement with the theoretical predictions given by Eq.s41d.

The expression for the mutual diffusivity is also verified
by measuring the decay rate of a transverse sinusoidal wave
with small amplitude in the concentration field. Simulation is
conducted on the same lattice given above. The initial per-
turbations in the number densities of both components were
set up according to Eq.s54d with p=const, i.e.,

L0dn0 + L1dn1 = 0, s68d

wheredna represents the perturbation in number density of
componenta, which is determined from the perturbations in
Xa according to Eq.s56bd.

The dependence on the relaxation timet of the diffusivity
is first tested. The parameters are just the same as those used
in the test of the shear viscosity. The measured diffusivity
together with the theoretical results are shown in Fig. 2 for

FIG. 4. The density distributions of the binary mixture withm0=1.0, m1=0.5, andj01=2.1 at some different times. Lattice size 256
3256; t=0.55.
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the cases ofm1=1.0 and 0.5 withm0=1.0. We can see that
the numerical results agree well with the theoretical predic-
tions. From the definition, we can see that the diffusivityD
depends not only on the relaxation timet, but also on the
interaction parameterj01 through the RDFx. In Fig. 3 we
show the measured diffusivity as a function ofj01. Excellent
agreement between the numerical and theoretical results is
observed again.

It is also observed that the diffusivityD is nonlinearly
dependent on the interaction parameterj01, and decreases as
j01 changes from 0 to a value about 2.2. Furthermore, asj01
increases above a critical valuesabout 2.0d, the diffusivity
becomes negative, which means that phase separation oc-
curs. To see this more clearly, we rerun the system form0
=1.0 andm1=0.5 on a 2563256 square lattice usingj01
=2.1, with a small random initial perturbation in the mass
concentration field that still ensures a constant pressure. It is
observed that the small perturbation is enlarged and some
small droplets of component 0 emerged at the early stage.
The small droplets become larger and some of them may
merge into a larger ones as time advances. Finally, the com-
ponent 0 is totally separated from component 1 and form
some circular drops. Figure 4 shows the density fields at
some different times during the separating process.

VII. SUMMARY

In the above sections, starting from the Enskog theory, we
have proposed a finite-difference-based lattice Boltzmann
model based on a discrete-velocity Enskog model for binary
mixtures of nonideal fluids. The hydrodynamic equations for
the mixture and the diffusion equation for each component of
the model are obtained through the Chapman-Enskog proce-
dure. Numerical tests based on the van der Waals one-fluid
approximation are also carried out to validate the model. The
theoretical and numerical results indicate that the FDLBE
can be used to simulate the mixing and separating processes
of two dense fluids.

We also note that there exist some differences between the
present FDLBE and the standard LBE presented inf7g. First,
in the FDLBE the two sets of discrete velocities for both
components are not identical if their molecular masses are
different, whereas the standard LBE utilizes a single
discrete-velocity set for both components in all cases. Sec-
ondly, in the FDLBE the equilibrium distribution function
for each component depends on the normalized temperature
which may be different from that for another component if
the molecular masses are different. In the LBE, however, the
equilibrium distribution functions for the two components
depend on the same reference normalized temperature. Fi-
nally, the FDLBE is capable of simulating binary mixtures of
nonideal fluids with different shear viscosities, whereas the
standard LBE is inapplicable to such systems.

The lattice Boltzmann model proposed here can be
viewed as an extension of the previous models for single-
component dense fluids. Unlike the interparticle-interaction
model f4g which uses a pseudopotential to mimic the inter-
particle interactions and the nonideal equation of state, and
the free energy modelf5g in which the nonideal equation of

state is incorporated into the equilibrium distribution func-
tion directly, the interparticle interactions in the present two
LBE models are incorporated through the radial distribution
function, which has a clear physics meaning.
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APPENDIX A: DERIVATION OF THE HYDRODYNAMIC
EQUATIONS

The macroscopic behaviors of the finite-difference-based
lattice Boltzmann model proposed in Sec. V are discussed in
this appendix. First, Eq.s33d can be rewritten as

faisx,t + dtd = f̂ aisx,td − dtseai · = d f̂ aisx,td

+
dt

2

2
seai · = d2f̂ aisx,td + Osdt

3d

; LW„ f̂ aisx,td… + Osdt
3d. sA1d

By combining Eqs.s32d and sA1d, we obtain

faisx,t + dtd = LW„faisx,td… + dtLWsVaid + Osdt
3d sA2d

or

Daifai = Vai −
dt

2
Rai sA3d

where

Vai = −
1

l
ffai − fai

seqdg + F̂ai, sA4d

Rai = f]t
2 − seai · = d2gfai + 2seai · = dVai + Osdd. sA5d

On the other hand, we know from Eq.sA3d that

]t
2fai = ]tVai − eai · = Vai + seai · = d2fai + Osdtd. sA6d

Therefore,

Rai = DaiVai + Osdd, sA7d

and thus Eq.sA3d can be written as

Daifai = S1 −
dt

2
DaiDVai + Osdt

2d, sA8d

or equivalentlyfup to Osdt
2dg,

Daifai +
dt

2
Dai

2 fai = Vai, sA9d

Meanwhile, from the definitionss27d and s35d, it is easy
to calculate the following moments:

o
i

fai
seqd = na, o

i

eaifai
seqd = nau, sA10ad

o
i

eaiaeaibfai
seqd = uanadab + nauaub, sA10bd
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o
i

eaiaeaibeaigfai
seqd = uanasuadbg + ubdag + ugdabd, sA10cd

o
i

F̂ai = 0, sA10dd

o
i

eaiF̂ai = S1 −
1

2t
DnauaFa, sA10ed

o
i

eaieaiF̂ai = S1 −
1

2t
DnauasFau + uFad + Osu3d. sA10fd

Now we derive the macroscopic hydrodynamic equations
from Eq. sA9d using the Chapman-Enskog method. We first
introduce the following multiscale expansions:

fai = fai
s0d + efai

s1d + e2fai
s2d + ¯ , sA11ad

]t = e]t1 + e2]t2, = = e=1, Fa = eFa
s1d, sA11bd

wheree is an expansion parameter which is used to select
terms of equal order of magnitude. With these expansions,
Eq. sA9d can be rewritten in consecutive orders of the pa-
rametere as

fai
s0d = fai

seqd, Ose0d, sA12ad

Dai
s1dfai

s0d = −
1

l
fai

s1d + Fai
s1d, Ose1d, sA12bd

]t2fai
s0d + Dai

s1dfai
s1d +

dt

2
fDai

s1dg2fai
s0d = −

fai
s2d

l
, Ose2d,

sA12cd

whereDai
s1d;]t1+vai ·=1.

From Eqs.sA12ad, s34d, ands35d, and with the help of Eq.
sA10d, we obtain that

o
i

fai
skd = 0, o

a

Ĵa
skd = 0 for k ù 1, sA13d

whereĴa
skd comes from the expansion ofĴa:

Ĵa = Ĵa
s0d + eĴa

s1d + e2Ĵa
s2d + ¯ . sA14d

Clearly, Ĵa
s0d= j a

s0d=0, Ĵa
s1d= j a

s1d+rauaFa
s1dd /2, and Ĵa

skd= j a
skd

=maoieaifai
skd for k.1, where j a

skd comes from the expan-
sion of j a.

Taking the zeroth- and first-order moments of Eq.sA12bd,
we obtain

]t1ra + =1 · sraud = 0, sA15d

]t1sraud + =1 · srauu + uaraI d = −
Ĵa

s1d

l
+ rauaFa

s1d,

sA16d

whereI is the unity tensor.
In order to derive the equations on thet2 scale, we first

rewrite Eq.sA12cd using Eq.sA12bd as

]t2fai
s0d + S1 −

1

2t
DDaifai

s1d = −
fai

s2d

l
−

dt

2
Dai

s1dFai
s1d, sA17d

from which we can obtain

]t2ra + S1 −
1

2t
D=1 · Ĵa

s1d = 0, sA18d

]t2sraud = −
Ĵa

s2d

l
− S1 −

1

2t
DH]t1Ĵa

s1d + =1 · Pa
s1d

+
dt

2
=1 · frauasFa

s1du + uFa
s1ddgJ

= −
Ĵa

s2d

l
+ =1 · sranaf=1u + s=1udTgd − S1 −

1

2t
D

3f]t1Ĵa
s1d + =1 · suĴa

s1d + Ĵa
s1dudg, sA19d

wherena=uast−0.5ddt. In the above deduction we have used
the fact that

Paab
s1d = mao

i

eaiaeaibfai
s1d = − lmao

i

eaiaeaibsDai
s1dfai

s0d − Fai
s1dd

= − lh]t1srauadab + rauaubd

+ =1gfuarasuadbg + ubdag + ugdabdg

− s1 − 1/2tdrauasFaa
s1dub + Fab

s1duadj

= − lrauas=1aub + =1buad + s jaa
s1dub + jab

s1duad + Osu3d.

sA20d

From Eqs.sA15d andsA18d, we can obtain the continuity
equation for componenta up to Ose2d,

]tra + = · sraud = − = ·Ja, sA21d

which can lead to the continuity equation for the mixture,

]tr + = · srud = 0. sA22d

Similarly, the momentum equation for the mixture can be
derived from Eqs.sA16d and sA19d as

]tsrud + = · sruud = − = pideal + = frns=u + s=udTdg

− o
a

rauaK a + o
a

raga, sA23d

wherepideal=r0u0+r1u1 is the ideal part of the pressure, and
n is the shear viscosity given by

n =
r0u0 + r1u1

r
St −

1

2
Ddt =

nkBT

r
St −

1

2
Ddt. sA24d

Note that

rauaK a = = frauasbaaraxaa + baa8ra8xaa8dg

+ baa8xaa8uarara8 = lnSra8

ra
D; sA25d

therefore by taking summation overa we can obtain that
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o
a

rauaK a = = Fo
a

rauasbaaraxaa + baa8ra8xaa8dG ,

sA26d

where we have made use of the facts thatx01=x10 and
b01x01u0=b10x10u1. Therefore, the momentum equation
sA23d for the mixture can be rewritten as

]tsrud + = sruud = − = p + = frns=u + s=udTdg + o
a

raga,

sA27d

wherep=p0+p1 and

pa = rauas1 + baaraxaa + baa8ra8xaa8d sA28d

for a=0,1.

APPENDIX B: THE DIFFUSION FORCE

In this appendix we shall discuss the diffusion force aris-
ing from the FDLBE. First, using Eq.sA15d, we can rewrite
Eq. sA16d as

ras]t1u + u · =1ud = − =1suarad −
Ĵa

s1d

l
+ rauaFa

s1d. sB1d

On the other hand, from Eqs.sA15d andsA16d we can obtain
the following mass and momentum equations for the mixture
at thet1 scale:

]t1r + =1 · srud = 0, sB2ad

rs]t1u + u · =1ud = − =1pideal + o
a

rauaFa
s1d. sB2bd

Therefore, from Eqs.sB1d and sB2bd, and with the help of
Eq. sA25d, we have

Ĵa
s1d

lra
=

=1pideal

r
−

=1srauad
ra

−
o rauaFa

s1d

r
+ uaFa

s1d

=
ra8

r
S=1sra8ua8d

ra8
−

=1srauad
ra

− ua8Fa8
s1d + uaFa

s1dD
=

ra8

r
Sga − ga8 +

=1pa8

ra8
−

=1pa

ra
+ ua8K a8

s1d − uaK a
s1dD .

sB3d

Note that

ua8K a8
s1d − uaK a

s1d = − xaa8fbaa8ra8ua + ba8araua8g=1 lnSra8

ra
D

= − xaa8Vaa8fna8ua + naua8g=1 lnSra8

ra
D

− xaa8Vaa8nana8kBTF 1

ra
+

1

ra8
G=1 lnSra8

ra
D

= − x01V01kBT
r

m0m1
=1 lnSna8

na
D sB4d

and recall thatĴa=eĴa
s1d+Ose2d; we can obtain from Eqs.

sB3d and sB4d that

Ĵa = − lnkBTda, sB5d

or

Ja = − dtst − 0.5dnkBTda, sB6d

whereda is the diffusion force given by

da =
r0r1

rnkBT
Fga8 − ga +

=pa

ra
−

=pa8

ra8
G

+ x01V01
n0n1

n
= lnSna8

na
D . sB7d

The diffusion forceda can also be formulated in terms of
the total pressurep and the chemical potential. First, we note
from the definition ofpa given by Eq.sA28d that

=pa

kBT
= = Fo

b

snadab + VabnanbxabdG
= o

b

f=nadab + Vab = snanbxabdg

= o
b

Eab = nb − x01V01n0n1 = lnSna8

na
D , sB8d

where

Eab = dab + 2naVabxab + o
c

nancVac
]xac

]nb

= dab + 2babraxab + nao
c

bacrc
]xac

]nb
. sB9d

Meanwhile, notice that

=pa

ra
−

=pa8

ra8
=

r

r0r1
= pa −

1

ra8
= p; sB10d

therefore, the diffusion forceda given by Eq.sB7d can be
rewritten as

da =
ra

nrkBT
fra8sga8 − gad − = pg +

1

nkBT
= pa

+ x01V01
n0n1

n
= lnSna8

na
D

=
ra

nrkBT
fra8Dga − = pg +

1

n
o
b

Eab = nb,

=
ra

nrkBT
Fra8Dga − = p +

r

ma
= maG sB11d

whereDga=ga8−ga, andma is the chemical potential of spe-
ciesa and satisfies]ma/]nb=skBT/nadEab.
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